Why was Spencer declared ineligible on QB1

Summary

According to Leibniz, the “machines of nature, i. H. living beings, even in their smallest parts ad infinitum machines ”(Monadology § 64). But just as surely these smallest parts are connected to one another in the organisms in such a way that they form a biological unit, i. H. Form a uniformly functioning system: In the cells, organs and living beings there are always comparable structures with a characteristic fine structure, e.g. T. micromorphologically representable, z. T. can only be deduced from the mode of operation. The function can basically only be understood from a chemical point of view.

Dedicated to Prof. Reinwein on the occasion of his 65th birthday.

This is a preview of subscription content, log in to check access.

Preview

Unable to display preview. Download preview PDF.

literature

  1. Abood, L.G .: Effect of chlorpromazine on phosphorylations of brain mitochondria. Proc. Soc. exp. Biol. (N.Y.) 88, 688 (1955). CrossRefGoogle Scholar
  2. Adolph, E. F., and J. P. Northrop: Physiological adaptations to bodywater excesses in rats. Amer. J. Physiol. 168, 320 (1952). PubMed Google Scholar
  3. Aikawa, J. K .: Fluid volumes and electrolyte concentrations in normal rabbits. Amer. J. Physiol. 162, 695 (1950). PubMedGoogle Scholar
  4. - Effects of cortisone acetate on fluid and electrolyte balance in normal rabbits. Proc. Soc. exp. Biol. (N.Y.) 82, 105 (1953). CrossRefGoogle Scholar
  5. - G. T. Harrell and B. Eisenberg: The exchangeable potassium of normal women. J. clin. Invest. 31, 367 (1952). PubMedCrossRefGoogle Scholar
  6. - and E. L. Rhoades: Effects of digitoxin on exchangeable and tissue potassium contents. Proc. Soc. exp. Biol. (N.Y.) 90, 332 (1955). CrossRefGoogle Scholar
  7. Anbar, M., and Z. Lewitus: Rate of bodywater distribution studied with triple labeled water. Nature (Lond.) 181, 344 (1958). CrossRefGoogle Scholar
  8. Anderson, E.C. R., L. Schuch, J.D. Perrings and W. H. Langham: The Los Alamos. Human counter. Nucleonics 14, No. 1, 26 (1956). Google Scholar
  9. Anderson, L., A. M. Landel and D. F. Diedrich: The galactose-glucose conversion in isotopic water. Biochim. biophys. Acta 22, 573 (1956). PubMedCrossRefGoogle Scholar
  10. André, T .: Studies on the distribution of tritium-labeled dihydrostreptomycin and tetracycline in the body. Acta radiol. (Stockh.) 142, 5 (1957). Google Scholar
  11. Annegers, J .: Total body water in rats and in mice. Proc. Soc. exp. Biol. (N.Y.) 87, 545 (1954). CrossRefGoogle Scholar
  12. Armstrong, W.D., J.A. Johnson, L. Singer, R.I. Lienke and M.L. Premer: Rates of transcapillary movement of calcium and sodium and of calcium exchange by the skeleton. Amer. J. Physiol. 171, 641 (1952). PubMed Google Scholar
  13. Arons, W. L., and A. K. Solomon: I. The separation of sodium from potassium in human blood serum by ion exchange chromatography. J. clin. Invest. 33, 995 (1954). PubMedCrossRefGoogle Scholar
  14. - R. J. Vanderlinde and A. K. Solomon: II. The simultaneous measurement of exchangeable body sodium and potassium utilizing ion exchange chromatography. J. clin. Invest. 33, 1001 (1954). PubMedCrossRefGoogle Scholar
  15. Bakay, L., B. Selverstone and W.H. Sweet: Intravascular distribution of Na24 injected intravenously into man. J. Lab. clin. Med. 38, 893 (1951). PubMedGoogle Scholar
  16. Barac, G .: Recherches sur la brûlure. Sur l’effet antidiurétique de la 5-hydroxytryptamine chez le chien. Arch. Int. Physiol. 61, 403 (1953). PubMedCrossRefGoogle Scholar
  17. Bartelstone, H. J .: Radioactive isotope in dentistry. Int. dent. J. 4, 629 (1954). Google Scholar
  18. - J. D. Mandel, E. Oshry and S. M. Seidlin: Use of radioactive iodine as a tracer in the study of the physiology of teeth. Science 106, 132 (1947). PubMed Google Scholar
  19. Bartley, W., and R. E. Davies: Active transport of ions by sub-cellular particles. Biochem. J. 57, 37 (1954). PubMed Google Scholar
  20. Bauer, G. C. H .: Metabolism of bone in rats investigated with Na22. Acta physiol. scand. 31, 334 (1954). PubMedCrossRefGoogle Scholar
  21. Behnke, A. R., B. G. Feen and J. C. Welham: J. Amer. med. Ass. 118, 495 (1942); quoted Mertz, D. P., Klin. Wschr. 34, 887 (1956). CrossRefGoogle Scholar
  22. Bélanger, L. F .: Autoradiographic visualization of atomic interchange in various mineralized tissues. J. Nat. Cancer 13, 238 (1952). Google Scholar
  23. - and C. P. Leblond: A method for lacating radioactive elements in tissues by covering histological sections with a photographic emulsion. Endocrinology 39, 8 (1946) .PubMedCrossRefGoogle Scholar
  24. - W. J. Visek, W. E. Lotz and C. L. Comar: The effects of fluoride feeding on the organic matrix of bones and teeth of pigs as observed by autoradiography after in vitro uptake of Ca45 and S35. J. biophys. biochem. Cytol. 3, 559 (1957). PubMedCrossRefGoogle Scholar
  25. Bélanger, R. C., C. P. Leblond and R. C. Greulich: Ann. N. Y. Acad. Sci. 60, 631 (1955); quoted from E. Schütte, Metabolism of Bone Tissue. 7. Mosbacher Coll. 1956. Berlin-Göttingen-Heidelberg: Springer.CrossRefGoogle Scholar
  26. Bender, M. L .: Oxygen exchange as evidence for the existence of an intermediate in ester hydrolysis. J. Amer. chem. Soc. 73, 1626 (1951). CrossRefGoogle Scholar
  27. - R. D. Ginger and K. C. Kemp: Oxygen exchange during the acidic and basic hydrolysis of amides and the enzymatic hydrolysis of esters. J. Amer. chem. Soc. 76, 3350 (1954). CrossRefGoogle Scholar
  28. - and K. C. Kemp: Oxygen-18 studies of the mechanism of the α-chymotrypsin-catalyzed hydrolysis of esters. J. Amer. chem. Soc. 79, 111 (1957). CrossRefGoogle Scholar
  29. - The kinetics of the α-chymotrypsin-catalyzed oxygen exchange of carboxylic acids. J. Amer. chem. Soc. 79, 116 (1957). CrossRefGoogle Scholar
  30. Benson, E. E., and K. Linderström-Lang: Deuterium exchange between myoglobin and water. Biochim. biophys. Acta 32, 579 (1959). PubMedCrossRefGoogle Scholar
  31. Bentley, R., and A. Neuberger: The mechanism of the action of uricase. Biochem. J. 52, 694 (1952). PubMedGoogle Scholar
  32. - and D. Rittenberg: Enzymecatalyzed exchange of oxygen atoms between water and carboxylate ion. J. Amer. chem. Soc. 76, 4883 (1954). CrossRefGoogle Scholar
  33. Berger, A., and K. Linderström-Lang: Deuterium exchange of poly-DL-alanine in aqueous solution. Arch. Biochem. Biophys. 69, 106 (1957). PubMedCrossRefGoogle Scholar
  34. Berger, E., B. B. Brodle, J. Axelbrod, M. F. Dunning, Y. Porosowska and J. M. Steele: Use of N-acetyl 4-aminoantipyrine in measurement of total body water in dog and man. Fed. Proc. 9, 11 (1950). Google Scholar
  35. Berggren, H .: Acta radiol. (Stockh.) 27, 248 (1946). CrossRefGoogle Scholar
  36. Bergström, S., U. Gloor and L. Krabisch: Synthesis of the tritiated 25-methyl homologues of 3 α, 7 α, 12 α-trihydroxy coprostane and coprocholic acid. Bile acids and steroids 55. Acta chem. scand. 11, 1695 (1957). CrossRefGoogle Scholar
  37. - S. Lindstedt and D. Sen: On the preparation of cholesterol labeled with tritium at carbon atoms 24 and 25 (cholesterol-24, 25-T). Bile acids and steroids 54. Acta chem. scand. 11, 1692 (1957). CrossRefGoogle Scholar
  38. Berliner, R. W .: The Kidney. Ann. Rev. Physiol. 16, 269 (1954). CrossRefGoogle Scholar
  39. - Th. J. Kennesy Jr. and J. Orloff: Relationship between acidification of the urine and potassium metabolism. Effect of carbonic anhydrase inhibition on potassium metabolism. Amer. J. Med. 11, 274 (1951). CrossRefGoogle Scholar
  40. Bernert, T., U. R. Seyss: Circulatory and anastomosis studies on parabiosis animals with the help of artificially radioactive phosphorus and sodium. Z. exp. Med. 117, 662 (1951). CrossRefGoogle Scholar
  41. Bernhard, K .: About the absorption of aliphatic hydrocarbons, carotenes and vitamin A in rats. Fats and soaps 55, 160 (1953). CrossRefGoogle Scholar
  42. - U. U. Gloor: The biological oxidation of fatty acids with triple bonds. Helv. Chim. Acta 36, 296 (1953). CrossRefGoogle Scholar
  43. - U. E. Scheitlin: About the breakdown of aliphatic hydrocarbons with 8-18 carbon atoms in the animal body. Helv. Chim. Acta 35, 1908 (1952). CrossRefGoogle Scholar
  44. - and pinion: For the absorption of neutral fat in biliary fistula dogs. Helv. Physiol. Acta 9, C 58, (1951). Google Scholar
  45. - G. Ulbrecht, M. Ulbrecht and H. Wagner: Attempts to determine the fat and glycogen synthesis in the liver of rats fed choline-free with the help of 14C-acetate and D-signed glycerine. Helv. Chim. Acta 37, 1439 (1954). CrossRefGoogle Scholar
  46. - J. P. Vuilleumier and G. Brubacher: On the question of the formation of benzoic acid in the animal body. Helv. Chim. Acta 38, 1438 (1955). CrossRefGoogle Scholar
  47. Berson, S. A., and R. S. Yalow: The use of K42 or P32 labeled erythrocytes and J.131 tagged human serum albumin in simultaneous blood volume determinations. J. clin. Invest. 31, 572 (1952). PubMedCrossRefGoogle Scholar
  48. - Critique of extracellular space measurements with small ions: Na24 and Br82 spaces. Science 121, 34 (1955). PubMedCrossRefGoogle Scholar
  49. - A. Azulay, S. Schreiber and B. Roswit: The biological decay curve of 32P tagged erythrocytes. Application to the study of acute changes in blood volume. J. clin. Invest. 31, 581 (1952). PubMedCrossRefGoogle Scholar
  50. Bertrand, G., et D. Bertrand: Sur le rubidium et d’autres métaux alcalins contenus dans le sang humain. Ann. Inst. Pasteur 80, 227 (1951). Google Scholar
  51. Bevander, G., and M. H. Amler: Radioactive phosphate absorption by dentin and enamel. J. dent. Res. 24, 15 (1945). CrossRefGoogle Scholar
  52. Bianchi, C. P., and A. M. Shanes: Calcium influx in skeletal muscle at rest, during activity and during potassium contracture. J. gen. Physiol. 42, 803 (1959). PubMedCrossRefGoogle Scholar
  53. Biggs, M. W., and D. Colman: A quantitative metabolic defect in lipid metabolism associated with abnormal serum lipoproteins in man. Circulation 7, 393 (1953). PubMedCrossRefGoogle Scholar
  54. Blahd, W. H., and S. H. Bassett: Potassium deficiency in man. Metabolism 2, 218 (1953). PubMed Google Scholar
  55. Blickenstaff, D. D .: Increase in intestinal absorption of water from isosmotic saline following pitressin administration. Amer. J. Physiol. 179, 471 (1954). PubMed Google Scholar
  56. - and L. J. Lewis: Effect of atropine on intestinal absorption of water and chloride. Amer. J. Physiol. 170, 17 (1952). PubMed Google Scholar
  57. Block, R.J., J.A. Stekol and J.K. Loosli: Synthesis of sulfur amino acids from inorganic sulfate by ruminants. II. Synthesis of cystine and methionine from sodium sulfate by the goat and by the microorganisms of the ruman of the ewe. Arch. Biochem. 33, 353 (1951). PubMedCrossRefGoogle Scholar
  58. Blout, E. R., and H. Lenormant: Changes in the infrared spectra of solutions of deoxypen-tose nucleic acid. Biochim. biophys. Acta 15, 303 (1954). PubMedCrossRefGoogle Scholar
  59. Bodansky, O .: Relationship of enzyme concentration to substrate change derived from time-course of reaction. J. biol. Chem. 209, 281 (1954). PubMed Google Scholar
  60. Bohr, H., and A. H. Sörensen: J. Bone Jt. Surg. 32A, 567 (1950); quoted after H. D. Cremer and W. Herr, Calcium and Strontium. In Artificial Radioactive Isotopes. Berlin-Göttingen-Heidelberg: Springer 1953.Google Scholar
  61. Bonhoeffer, K. F .: Ferment reactions in heavy H2O. Result. Enzyme research 6, 47 (1937). Google Scholar
  62. - Physiological-chemical investigations with deuterium compounds. Z. Elektrochem. 44, 87 (1938). Google Scholar
  63. Borghgraef, R .: Le volume de l’espace extracellulaire chez le lapin en anurie hypochlorémique. Arch. Internat. Pharmacodyn 99, 74, (1954). Google Scholar
  64. - La circulation rénale pendant l’anurie hypochlorémique expérimentale. Arch. Int. Pharmacodyn. 99, 82 (1954). PubMed Google Scholar
  65. Born, G. V. R., and E. Bülbring: The movement of potassium between smooth muscle and the surrounding fluid. J. Physiol. (Lond.) 131, 690 (1956). Google Scholar
  66. Boyer, P.D., A. B. Falcone and W. H. Harrison: Reversal and mechanism of oxidative phosphorylation. Nature (Lond.) 174, 401 (1954). CrossRefGoogle Scholar
  67. - O. J. Koeppe and W. W. Luchsinger: Direct oxygen transfer in enzymic syntheses coupled to adenosine triphosphate degradation. J. Amer. chem. Soc. 78, 356 (1956). CrossRefGoogle Scholar
  68. - W. W. Luchsinger and A. B. Falcone: O18 and P32 exchange reactions of mitochondria in relation to oxidative phosphorylation. J. biol. Chem. 223, 405 (1956). PubMed Google Scholar
  69. Boyle, P.J., and E.J. Conway: Potassium accumulation in muscle and associated changes. J. Physiol. (Lond.) 100, 1 (1941). Google Scholar
  70. Brandt, J. L., W. Glaser, A. Jones, M. Bianchi and M. Feller: Soft tissue distribution and plasma disappearance of intravenously administered isotopic magnesium with observation on uptake in bone. Metabolism 7, 355 (1958). PubMed Google Scholar
  71. Breuer, H. J., and R. Whittam: Ion movements in seminal vesicle mucosa. J. Physiol. (Lond.) 135, 213 (1957). Google Scholar
  72. Brierley, J.B .: Penetration of 32P and 24Na into nerves tissues of the rabbit. J. Physiol. (Lond.) 117, 6P (1952). Google Scholar
  73. Broda, E .: Radioactive Isotopes in Biochemistry. Vienna: Ms. Deuticke 1958.Google Scholar
  74. Brodle, B. B., E. Y. Berger, J. Axelbrod, M. F. Dunning, Y. Porosowska and J. M. Steele: Use of N-acetyl 4-aminoantipyrine (NAAP) in measurement of total body water. Proc. Soc. exp. Biol. (N.Y.) 77, 794 (1951). CrossRefGoogle Scholar
  75. Bronner, F., R.S. Harris, C.J. Maletskos and C.E. Benda: Studies in calcium metabolism. The fate of intravenously injected radiocalcium in human beings. J. clin. Invest. 35, 78 (1956). PubMedCrossRefGoogle Scholar
  76. Brull, L., R. Busset, C. Olivier and C. Oosterbosch: Métabolisme de phosphore dans le rein. Bull. Soc. Chim. biol. 39, 1483 (1957). PubMedGoogle Scholar
  77. Bugnard, L., F. Chevallier and J. Coursaget: Utilization du cholestérol-C14 pour l’étude de l’absorption et de l’excrétion intestinal du cholestérol chez le rat. J. Physiol. (Paris) 45, 413 (1953). Google Scholar
  78. Burch, G. E., and C. T. Ray: Studies of the rate of transfer of 86Rb, 39K, 24N / A, 23N / A, 36Cl and 35Cl across the pericardium of dogs. Circulate. Res. 6, 755 (1958). PubMedCrossRefGoogle Scholar
  79. - P. Reaser and J. Cronwich: J. Lab. clin. Med. 32, 1169 (1947). PubMedGoogle Scholar
  80. - S. A. Threefoot and C. T. Ray: Rates of turnover and biologic decay of chloride space in the dog determined with the longlife isotope 36Cl. J. Lab. clin. Med. 35, 331 (1950). Google Scholar
  81. - The rate of disappearance of Rb86 from the plasma, the biological decay rates of Rb86 and the applicability of Rb86 as a tracer of potassium in man with and without chronic congestive heart failure. J. Lab. clin. Med. 45, 371 (1955). PubMed